Aquaculture: With Special Reference to Developments in Asia

Why fish? Why Aquaculture?

Sena S. De Silva
Network of Aquaculture Centers in Asia Pacific, Bangkok, Thailand and
School of Life and Environmental Sciences, Deakin University, Australia
The topics covered

• What is NACA
• Why eat fish
• Changes of the Fishery sector
 – Production
 – consumer habits/ demands
• Why aquaculture
• Aquaculture
 – Global trends
 – Asian trends
About NACA

• Intergovernmental organization
 – 17 member countries (governments)
 – 1 associate member (SPC)
• Promotes rural development through sustainable aquaculture
 – Technical cooperation among members
• NACA members produce > 80% of world aquaculture production by volume
 – Members are:
 • Australia, Bangladesh, Cambodia, China, Hong Kong SAR, India, Indonesia, IR Iran, DPR Korea, Malaysia, Myanmar, Nepal, Pakistan, Philippines, Sri Lanka, Thailand and Vietnam
NACA:
17 Member Nations
21 Participating Nations
NACA- Structure & operating mechanisms

NACA Structure

Governing Council (GC)

Technical Advisory Committee (TAC)

Secretariat

Administrative Support

Technical Services Wing

Regional programmes and initiatives

STREAM Initiative
Information & Communications
Health
R & D Collaboration
Education & Training

Network

Fiscal Agencies
NACA Collaborating Centres
Regional Lead Centres
People-centered networks
Regional Resource Centres
Associated Institutions

Projects / TCDC Activities / Exchanges / Initiatives

National Coordinators
Project Implementation Teams
Working Groups
Advisory Groups
Operatives
NACA Centres

• **Regional Lead Centres**
 – Freshwater Fisheries Research Centre, China
 – Central Institute for Freshwater Aquaculture, India
 – Inland Fisheries Research & Development Bureau, Thailand

• **Collaborating Centres**
 – Aquaculture Department of SEAFDEC

• **More than 30 participating centres throughout the region**
 – Collaborating in research
 – Sharing information and resources
 – Training and exchanging expertise
Asia-Pacific Marine Finfish Aquaculture Network

- Cooperative R&D programme to support development of sustainable marine fish farming
 - People-based network with institutional participation
 - Multi-sector participation: Government Policy and R&D, Farmers Groups, Traders, Industry, NGOs
 - ACIAR, Skretting, CSIRO, QDPI, RIM-Gondol, RIA 1, Krabi CFRDC, BADC-Situbondo, AFCD-Hong Kong and more
 - Electronic Newsmagazine and newsletter
Aquatic Animal Health

- Reduce the risk of aquatic animal disease impacting on trade, environment & human health
 - Development of policy framework
 - Implementation of practical health management strategies at farm, local, national and regional levels
 - Regional surveillance system
 - Technical support through sharing of expertise and laboratory facilities
 - Participation of primary producers
 - Address emerging issues such as food safety and new disease (KHV, WTD, TS)
 - FAO, OIE, ACIAR, AusAID, SEAFDEC, AAHRI, DAF, MPEDA and more
Genetics & Biodiversity

- Support members to conserve aquatic biodiversity and genetic resources by:
 - Building capacity for national aquatic resource management programs
 - Coordinate cooperative R&D programs
 - Development of broodstock management programmes for economically important and newly emerging indigenous species
 - Contribute to conservation plans for endangered species
 - e.g. Mekong giant catfish
 - Kasetsart University, DOF Thailand, FAO, MRC, WFC, Deakin University, Malaysian Fisheries Society
Culture-based Fisheries

- Development of extensive, community-based aquaculture through:
 - Development of ‘best practice approaches’ to culture-based fisheries
 - Effective use of small water bodies for low cost fish production amongst rural communities
 - Application of co-management principles to culture-based fishery and stock enhancement activities
 - Dissemination of findings from completed projects in member countries
 - ACIAR, Deakin University, RIA 1(Vn), Laos PDR, Kelaniya University (SL), University of Stirling

Translated into Lao & Vietnamese
Support to Regional Aquatic Resource Management

- Address rural development and poverty alleviation issues by promoting:
 - Improved understanding of the livelihoods of poor fishers and farmers
 - Institutions that better support the livelihoods objectives of poor fishers and farmers
 - Policy development that reflects the livelihoods objectives of the poor fishers and farmers
 - Improved communications among the poor, service providers, institutions & policy makers
 - AusAID, DFID, FAO, VSO APEC
Special Programme in Response to the Tsunami

- Practical (needs-driven) assistance (direct) to affected farmers
 - Implementation is by community
 - Emphasis on self help
- Regional – CONSRN (BOB-IGO, FAO, NACA, SEAFDEC, WFC)
- Thailand
 - Rehabilitation of cage culture (Rotary Int’, AmerFS)
 - Training in marine finfish culture (FAO, DOF)
 - Environmental education (Chiba, Japan civic group)
 - Support to DOF coordination
 - Microcosm hatchery pilot (NORAD and AQVAPLAN NIWA)
- Aceh Indonesia
 - Supporting local governments and communities in rehabilitation of the aquaculture sector (ETESP Grant, ADB);
 - Microcosm hatchery pilot (NORAD and AQVAPLAN NIWA)
- Sri Lanka
 - Community participatory and livelihoods training (STREAM with FAO Grant)
• Promote (capacity building,) human resource development and technical exchange

 – Participating centres share expertise
 – Short term courses, workshops, study visits
 – Training is coordinated by Secretariat
 – Customized training as requested
 – RLCC, DOF Thailand, CIFA India, Pulau Sayak Prawn Production Centre, Malaysia, GRIM and Situbondo Centres, Indonesia, many more
Communications

• Improve communication and information sharing between members through:
 – Portal website on aquaculture
 • News and events
 • Free download of all NACA publications (>700)
 • Discussion forums / online community
 – Training in digital publishing and website management
• Visit www.enaca.org
Adoption of BMPs: the case of shrimp farming, India

Shrimp Farming & the Environment
• Support development & adoption of Better Management Practices
 – Focused on small-scale farmers
 – Increase productivity by reducing risk of shrimp health problems
 – Reduce impacts of farming on environment
 – Improve food safety & product quality
 – Improve social benefits of shrimp farming
 – Consortium with FAO, NACA, UNEP, World Bank, WWF
Progress in last 6 years

2001
- Survey
- 365 ponds
- Nellore
- West Godavari
- Risk factors
- BMPs

2002
- Farm level demonstration
 - 5 farmers
 - 10 ponds
 - 7 Ha
 - 4 tonnes

2003
- Village level extension
 - 1 Village
 - 1 Aquaclub
 - 58 farmers
 - 108 ponds
 - 58 Ha
 - 22 tonnes

2004
- Creek level extension
 - 6 Villages
 - 7 Aquaclubs
 - 130 farmers
 - 254 ponds
 - 173 Ha
 - 40 tonnes

2005
- State level expansion
 - 3 States
 - 19 Aquaclubs
 - 736 farmers
 - 1187 ponds
 - 663 Ha
 - 672 tonnes

2006
- 5 States
 - 28 Aquaclubs
 - 730 farmers
 - 1370 ponds
 - 813 Ha
 - 1000 t (exp)

2007+
- National Centre for Sustainable Aquaculture

Expansion to 5 states
Expansion to other states
Pilot traceability
Contract hatchery Seed Production

2007
Calibration of PCR service providing Labs

• India
 – One Voluntary WSSV PCR calibration exercise completed in June 2006 (37/49 labs returned results)
 – PCR calibration in Feb 2007 (33/51 labs returned results)
 – PCR laboratory accreditation program for India being developed (in conjunction with MPEDA)

• Indonesia
 – I PCR calibration completed in Indonesia in March 2007 (33/34 labs returned the results)
 – II PCR inter calibration planned in August 2007

• Lessons learnt
 – Assess the quality of results received by the shrimp farmers
 – Opportunity for the labs to evaluate their own performance and compare with other labs
 – Opportunity for labs to maintain confidentiality and seek technical assistance
 – Possibility of expanding the scope of the exercise to other countries e.g. Malaysia, Vietnam
ACIAR funded regional project
“Application of PCR for improved shrimp health management” (Jan 2005- Dec 2007)
Partners:
- CSIRO (Australia), Mahidol U. (Thailand), MPEDA, CIBA, COF (India) and NACA
Purpose:
- to prepare the labs for a future laboratory accreditation programme
The Process:
- Preparation of samples (5 DNA+5 Tissue samples per lab)
- Validation of results in 3 laboratories (CSIRO, CIBA, COF)
- Seeking expression of interest from labs
 - Allotment of laboratory codes
 - Distribution of samples
 - Collation of results
- Providing summary results back to all the participating labs
- Providing technical assistance, where required
New initiatives (1): South-South cooperation

- South-south dialogue
 - General view:
 - The need of a “NACA Like Network” for Africa

- NACA working closely with FAO and African Colleagues
 - Study tours in Asia
 - Familiarization with NACA functioning

- NACA has agreed to support all initiatives
New initiatives (2): Certification

- Addressing issues on certification of cultured commodities
 - A necessary entity for export markets
- Initiatives in conjunction with FAO & Regional Governments e.g. Thai (Shrimp)
- Work with WWF on development of "standards" for selected commodities
New initiatives (3): BMPs

- Extending the development of BMPs for other major commodities
- BMPs:
 - Increase marketability
 - Impacts environment minimally
- Activities:
 - Extension of successful experiences with shrimp
 - Marine finfish (funding ACIAR)
 - Tra catfish (*Pangasianodon hypophthalmus*: 1.2 million tonnes production), Vietnam (AusAID)
Want to know more?

• Contact us at:
 – PO Box 1040, Kasetsart University Post Office, Jatujak, Bangkok 10903, Thailand
 – Ph: +66 (0)2 561 1728
 – Fax: +66 (0)2 561 1727
 – Email: naca@enaca.org

• Or visit:
 – www.enaca.org
Fish in Asian Culture: Why eat fish?

- Fish have been long associated with man; food; festivities etc.; temple inscriptions from Bayon Temple, Angkor Wat complex, Siem Reap, Cambodia; 12/13 th century
Fish in human Culture; Why eat fish?

- 3000 yr old inscriptions from an Egyptian tomb

A garden pond painting; 3500 yrs
Why eat fish?

- Fish provide nutrition;
 Nutrition: provision of basic chemicals needed for tissue growth, repair and well-being and energy for metabolism; movement, maintenance of body temperature, all activities;

- Fish are also known to be especially important from another perspective;
 provide poly-unsaturated fatty acids of the n-3 and n-6 series, health benefits
Why eat fish?

Fish provide very important nutrients

- **Best food source of iodine, selenium etc.**
- **Vitamins**
- **Best source of co-enzyme Q10** (anti-oxidant; drops in degenerative conditions such as in Alzheimer’s disease)
- **Fatty acids**
 - DHA- docosahexaenoic acid; 22:6n-3
 - EPA- eicosapentaenoic acid; 20:5n-3
 - AA- arachidonic acid; 22:4n-6
- **Fatty acids**
 - important to human health:
 - Pre-cursor to eicosanoids
 - General well being
 - Fatty acids also thought to have played a major role in human evolution; human brain (Crawford *et al.*, 1999)
Fish consumption is associated with a wide range of health benefits (FRDC, 2004)

<table>
<thead>
<tr>
<th>Disease/health condition</th>
<th>Strong evidence</th>
<th>Promising prelim. Results</th>
<th>Require study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High blood pressure</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular heart beat</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Bowel</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>– Laryngeal</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>– Pancreatic</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central nervous system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Neural development</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>– Memory</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Fish in human life

- Fish is also an affordable source of protein for most communities

- Fish related activities provide significant employment to communities; especially rural, poor communities
 - >200 million people depend on fishery activities for their livelihoods

- Inland fisheries tend to supplement agricultural income
Food fish availability

- Globally fish provide >2.8 billion people with 20% of per caput protein intake

- Contribution of fish to world Animal protein supplies peaked in 1996 at 16%

- Fish consumption patterns vary markedly between continents and countries
Food fish consumption patterns: some highlights

• the per caput consumption in 1996 was 15.8 kg per annum

• consumption has grown at an annual rate of 4.7% from 1990-to 95

• the per caput consumption differs from continent to continent:
 – within a continent major regional differences;
 • European Union nations it is 22 Kg per annum
 • but only 6-9 Kg in Central and Eastern Europe

• Consumption LIFDC is only 12.7 Kg per annum
 – compared to the WORLD AVERAGE OF 19.5 Kg per annum.

➢ Inland fish accounts for about 20-25% of the animal protein intake
 ➢ particularly in rural populations in the developing world (Delgado et al. 2003)
Food fish consumption patterns: some highlights

- the Asian region highest population concentration in the world

- currently consumes about 17.2 kg of fish caput\(^{-1}\) annum\(^{-1}\) (world avg. 15.8 kg).
 - Percent of fish in animal protein intake (Tacon & Forster, 2001)
 - Korea - 55.7
 - Sri Lanka - 54.3
 - Indonesia - 53.1
 - Bangladesh - 48.3
 - Malaysia - 34.5
 - Vietnam - 39.4
 - Cambodia; Siem Reap Province 80-85

- The population in the Asian region is expected to reach 4.16 billion by year 2020.

- If the current fish consumption rate is to be maintained the region will require 70 million tonnes of fish by 2020

- an increase of nearly 26x 10^6 tons from the present Asian production of 43.96 million tons.
Food fish consumption patterns: some highlights

- a shift towards increased consumption of fish in the developing world;
- production is dominated by the latter accounting for nearly 70% of global production (Delgado et al. 2003);
- most markedly, the consumption of inland, freshwater fish has increased over ten fold between 1981 and 1997;
- consequently, there is an increasing emphasis on the development of inland fisheries as a significant contributor in narrowing the growing gap between supply and demand for fish food (Welcomme and Bartley 1998; De Silva 2003);
- inland fish accounts for about 20-25% of the animal protein intake, particularly in rural populations in the developing world (Delgado et al. 2003).
What is the future?

- Fish consumption is on the increase
- Fish supplies- traditional sources have plateaued
- What is the future?
The predicted needs of fish food supplies

<table>
<thead>
<tr>
<th>Forecasts and forecast dates</th>
<th>By the forecast date</th>
<th>Calculated quantities required from aquaculture by the forecast date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global per capita consumption (kg/ year)</td>
<td>Food fish demand (x million tonnes)</td>
</tr>
<tr>
<td>Delgado et al., (2003), (IFPRI) 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>17.1</td>
<td>130</td>
</tr>
<tr>
<td>Lowest</td>
<td>14.2</td>
<td>108</td>
</tr>
<tr>
<td>Highest</td>
<td>19.0</td>
<td>145</td>
</tr>
<tr>
<td>Wijkström (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>17.8</td>
<td>121.1</td>
</tr>
<tr>
<td>2050</td>
<td>30.4</td>
<td>270.9</td>
</tr>
<tr>
<td>Ye (1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>15.6</td>
<td>126.5</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td>183.0</td>
</tr>
</tbody>
</table>
The predicted needs of fish food supplies

- **World population increases and future fish demand**

<table>
<thead>
<tr>
<th>Region</th>
<th>2005 population ('000)*</th>
<th>2020 population ('000)*</th>
<th>%increase</th>
<th>Per capita fish supply (kg) (2001)**</th>
<th>Current fish supply (tonnes)***</th>
<th>2020 fish demand (tonnes)****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>905936</td>
<td>1228276</td>
<td>35.6</td>
<td>7.8</td>
<td>7,066,301</td>
<td>9,580,553</td>
</tr>
<tr>
<td>Asia (excluding China)</td>
<td>2589571</td>
<td>3129852</td>
<td>20.9</td>
<td>14.1</td>
<td>36,512,951</td>
<td>44,130,913</td>
</tr>
<tr>
<td>Europe</td>
<td>728389</td>
<td>714959</td>
<td>-1.8</td>
<td>19.8</td>
<td>14,422,102</td>
<td>14,156,188</td>
</tr>
<tr>
<td>Latin America & the Caribbean</td>
<td>561346</td>
<td>666955</td>
<td>18.8</td>
<td>8.8</td>
<td>4,939,845</td>
<td>5,869,204</td>
</tr>
<tr>
<td>North America</td>
<td>330608</td>
<td>375000</td>
<td>13.4</td>
<td>17.3</td>
<td>5,719,518</td>
<td>6,487,500</td>
</tr>
<tr>
<td>Oceania</td>
<td>33056</td>
<td>38909</td>
<td>17.7</td>
<td>23</td>
<td>760,288</td>
<td>894,907</td>
</tr>
<tr>
<td>China</td>
<td>1315844</td>
<td>1423939</td>
<td>8.2</td>
<td>25.6</td>
<td>33,685,606</td>
<td>36,452,838</td>
</tr>
<tr>
<td>World</td>
<td>6464750</td>
<td>7577889</td>
<td>17.2</td>
<td>16.3</td>
<td>105,375,425</td>
<td>123,519,591</td>
</tr>
</tbody>
</table>

*Source: UN
**Source: FAO
***2005 population x 2001 per capita supply
****2020 population x 2001 per capita supply
Meeting the demand and supply gap:

- The population in the Asian region is expected to reach 4.16 billion by year 2020.

- If the current fish consumption rate is to be maintained the region will require 70 million tonnes of fish by 2020.
 - An increase of nearly 26×10^6 tons from the present Asian production of 43.96 million tons.
 - Lack of new exploitable marine stocks

- The gap between supply and demand to be met with from aquaculture?
Major, global changes taking place in the fishery sector

- Change from a developed country dominated sector to a developing country dominated sector
- This trend is being further consolidated

Data based on Delgado et al. (2003)
What is the reality: current trend

- The global aquaculture production has been on the increase
- Capture fishery almost stagnant
- Inland aquaculture still predominant
What is the reality: current trend

- The contribution of aquaculture to the food fish supplies have been increasing over the last three decades
- Freshwater food fish supplies predominated by aquaculture
- Currently of all food fish consumed globally 34% percent is from aquaculture
- 2006 estimates preliminary indicate that it is gone up to 43%
 - By 2010, 50% of all food fish consumed is likely to be from aquaculture
What is the reality: current trend

- Global aquaculture is dominated by Asia
- >85% of global production
- Eight out of 10 leading aquaculture producing nations are in Asia
We live in an era in which fish is a most traded commodity: More than 40% of this is cultured: >85% of this in Asia

For developing countries fisheries is becoming an increasingly important and significant traded commodity (ies)

- Income generation
- Increased livelihood opportunities
- Better nutrition
- Foreign exchange earnings

(From Kurien, 2005)
Fisheries – trade: increasing dominance in aquaculture in Asia

In Asia an overall increase in the predominance of the aquaculture sector: reflected in the trade of fishery products also
In almost all major ‘fish’ producing countries in Asia the dominance of aquaculture is increasing & hence in the trade of fishery products...
Aquaculture in Asia—trade: Increasing contribution to GDP

Increased dominance of aquaculture is reflected in the GDP of Asian nations

<table>
<thead>
<tr>
<th></th>
<th>Capture Fisheries</th>
<th>Aquaculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>1.884</td>
<td>2.688</td>
</tr>
<tr>
<td>PR China</td>
<td>1.132</td>
<td>2.618</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2.350</td>
<td>1.662</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>1.432</td>
<td>5.775</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1.128</td>
<td>0.366</td>
</tr>
<tr>
<td>Philippines</td>
<td>2.184</td>
<td>2.633</td>
</tr>
<tr>
<td>Thailand</td>
<td>2.044</td>
<td>2.071</td>
</tr>
<tr>
<td>Vietnam</td>
<td>3.702</td>
<td>3.497</td>
</tr>
</tbody>
</table>

Guanzhou-China: Shrimp culture

Myanmar

CatBa-N.Vietnam
Conclusions: Part 1

• Food fish needs are increasing
 – Due to health reasons; in the developed world
 – An affordable animal protein supply to rural communities
• Traditional supplies stagnating
• Major changes in
 – Fish consumption patterns and
 – Fishery production; dominance shifted from developed to developing nations
• Aquaculture is expected to meet most of the increasing demand
 – Currently inland aquaculture more predominant
• Aquaculture is increasingly dominant in fishery trade
• Aquaculture production and fishery trade dominated by Asia
Conclusions: Part 1

• Give a person a fish and you feed them for a day; teach a man how to grow fish and you feed them for a lifetime
 – An old Chinese proverb

Thank you all